library(ggplot2) library(sp) sdf <- SpatialPointsDataFrame(df3[,c("lon","lat")],df3) sdf <- SpatialPointsDataFrame(df3[,c("lon","lat")],df3,proj4string = CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")) plot(sdf) sdf$m3ar <- sdf$ar/sdf$ater library(GWmodel) hist(sdf$m3ar) hist(log(sdf$m3ar)) quick.map <- function(spdf,var,legend.title,main.title) { x <- spdf@data[,var] cut.vals <- pretty(x,5) x.cut <- cut(x,cut.vals) cut.levels <- levels(x.cut) cut.band <- match(x.cut,cut.levels) colors <- brewer.pal(length(cut.levels), "YlOrRd") colors <- rev(colors) par(mar=c(1,1,1,1)) plot(spdf,col=colors[cut.band],pch=16) title(main.title) legend("topleft",cut.levels,col=colors,pch=16,bty="n",title=legend.title) } localstat1 <- gwss(sdf,var=c("ar","ater","m3ar"),bw=0.3,quantile=T) locstat <- bw.gwss.average(sdf,vars=c("ar","ater","m3ar")) locstat localstat1 library(RColorBrewer) localstat1$SDF$m3 quick.map(localstat1$SDF, "m3ar_Median","tut","tit") colnames(sdf) grd <- SpatialGrid(GridTopology(c(18.93,47.39),c(.005,.005),c(80,50))) grd2 <- c(grd,grd) grd2 plot(grd2) DM <- gw.dist(dp.locat=coordinates(sdf),rp.locat = coordinates(grd)) DM2 <- gw.dist(dp.locat=coordinates(sdf2),rp.locat = coordinates(grd)) sdf2 <- sdf[!is.na(sdf$Emelet),] regrs <- gwr.basic(log(m3ar)~log(ater),sdf,bw=0.02,kernel = "exponential", dMat = DM, regression.points = grd) regrs <- gwr.basic(log(m3ar)~log(ater)+log(tomkoz+1),sdf,bw=0.02,kernel = "exponential", dMat = DM, regression.points = grd) regrs <- gwr.basic(log(m3ar)~log(tomkoz+1)+as.factor(Emelet)+as.factor(ker),sdf2,bw=0.30,kernel = "exponential", dMat = DM2, regression.points = grd) table(sdf$Emelet) (regrs) regrs$SDF$as.factor.ker.2 image(regrs$SDF,'log.tomkoz...1.') #,xlim=c(19.135,19.139),ylim=c(47.45,47.55)) image(regrs$SDF,'as.factor.ker.10') #,xlim=c(19.135,19.139),ylim=c(47.45,47.55)) contour(regrs$SDF,'log.tomkoz...1.',add=T) plot(sdf, add=T, col="blue",alpha=0.1) plot(grd)